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Artificial Intelligence

ARTIFICIAL INTELLIGENCE

A program that can sense, reason,
act, and adapt

Types of Machine Learning

Machine
Learning

MACHINE LEARNING ‘

Algorithms whose performance improve

as they are exposed to more data over time Supervised

n EEP Task Driven Data Driven Learn from
lEARNING (Predict next value) (Identify Clusters) Mistakes

Subset of machine learning in M
which multilayered neural
networks learn from
vast amounts of data




Deep learning (e.g. MILA-Montréal)




Deep learning success stories

Self-driving car

AlphaGo beat (4-1) world Vehicules have driven 1.6m
champion Lee Sedol (March km
2016) Fautive in 1 crash (June 2015)

Why not medical imaging ?

© enlitic \@’IBM Watson

MIT technology 50 smartest companies Watson Health medical imaging collaborative
6000 lung cancer diagnoses 15 health systems, medical centers and
50% more accurate than human radiologists ~ imaging comp.

Data from ~300m patients

Image recognition

ImageNet Challenge: classify 1.2m high-res.
images

U. of Toronto team reaches 17% top-5 error rate
(2012)

b Google DeepMind

Applying machine learning to RT planning for
H&N cancer

Objective: segmentation process 4 hours 2> 1
hour

ImagX, BidMed, ... Telemis, Intuitim, DNAIytics, Oncoradiomics




Image-based decision in the previous
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Deep Learning high predicitive
power (e.g. facial recognition)

(Cl) 4 feature maps (52) 6 feature maps {C2) & feature maps

sub-sampling layer | convolution layer | sub-sampling layer | fully connecred MLPI




The move based on the high
predictivity power of deep learning

n Feature SVM  k-NN

put extraction Output
D&dsinn Tre

Input —[ Deep Learning J— Output




Convolutional Neural Networks
(CNN)

Forward Propagation

Feature maps
Feature maps

TN

Convolution Poohng Convolution Poo]mg

Fully
connected
Dutput

Feature maps

Feature maps

Input

dl.
]

Backward Propagation

Fig. 1. The CNN structure
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Pro and cons of Deep Learning

eUnique structure (CNN) for many
problems

*« Generalisable » with regards the
training set

*There exist a lot of opensource tools

eBut: need for large annotated training sets

eBut: lack of explainability of the deep
features and their co-action

eBut: lack of actionability



And ....

e|ntriguing properties of neural networks
(C. Szegedy et al. )

input image classified as

adversarial noise

misclassified as



https://www.pluribus-one.it/research/sec-ml/wild-patterns

Deep Learning has an outstanding accuracy in
difficult problems but hard to explain outliers

U-net fails for two patients Prediction

Patient 30
(DSC = 0.124)

Patient 44
(DSC = 0.211)
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L'Intelligence Artificielle et les radiologues

« Les radiologues qui utiliseront I'lA remplaceront ceux
qui ne l'utilisent pas »

1. « Unpredictable » outliers (reliability ?)
2. Explainability of the decision ?
3. Actionability and commitment
4. Data privacy (blockchained distributed learning)
5. Evolution of expertise
2% « Prédire n’est pas comprendre »

‘ Explainability of algorithms (GDPR)
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Deep learning in medical imaging
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Advanced deep learning

eU-Net segmentation
eGenerative Adversarial Networks (GANSs)
eDeep Reinforcement learning



U-Net Segmentation
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GANSs

Generative Adversarial
Network

Real
Samples

Latent
Space

IsD
‘. Correct?

G

Generator Generated

Fake
= Samples

Fine Tune Training
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Use of GAN in radiology

Realistic Tumors
in Random Locations

(GAN)
Generate

Synthetic Images for

\ Data Augmentation

& Generate
(Conditional GAN)

Original Brain
MR Images

Realistic Tumors
with Desired Size/Location
by Adding Conditioning

Physician Training 7Eks nage Ground-truth

/T MRI
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( Adversarial Learning
L Semi-supervised Learning
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Deep Reinforcement learning
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Optimizing by Deep (R)L

Diagnosis Treatment Treatment Follow-Up
Planning Delivery
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The Radiomics challenge

ePredictive and personnalized medicine

Extract features

Patient
LJ

I

Clinical & molecular

&3
Py

|

Medical imaging

Radiomics

Aggregate & Mine

CDSS

Model output
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Research assumption 1: three kinds of

Interpretability/reliability

latent spaces by multi-agents

Biological/  emisieimR s Tn s e
Physical o '
L ———— features > Hybrid methods
T 8 f SR
(" Physical representation, organs, ) Vistial s
__ tissues and molecules L featuirss
e s oE L SR optimum
> rERge . learned
( Transform based Signal Processing ) features
- S ity
Human interactionsthrough ( > DeEpNeural Networks k )
visual features . g
2 e

Flexibility/predictive power
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Fingerprints (physical) latent space

eRensonnet, G., Scherrer, B., Girard, G., Jankovski, A., Warfield, S. K., Macq, B., ... & Taquet, M. (2019). Towards microstructure

fingerprinting: Estimation of tissue properties from a dictionary of Monte Carlo diffusion MRI simulations. Neurolmage, 184,

964-980.
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Visual feature (actionable) latent space

Motion measurements 4DCT and IRM (coronal) after co-registration (2D on 3D)




Validation

a. Comparison with motion at the same position
b. Comparison with motions at other positions

Nav used to select
phase to use

Nav used to validate the method
by comparing motion amplityde




Complete example with dose delivery observation
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https://www.youtube.com/watch?v=DqlDVkqdVZM&t=43s
http://www.youtube.com/watch?v=DqlDVkqdVZM

Deep Learning latent space

Measuring anatomical variations between treatment
sessions would improve dose conformity

: . : . o

%\;
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Measuring anatomical variations between treatment
sessions would improve dose conformity

()

Problem
Scarcity of annotated CBCTs to train a deep neural
network

Add (abundant) annotated CTs in training set?

29



Methods: The network architecture is u-net
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Output
probability map

Legend
= Conv 3x3x3, ReLu, « same » padding
= Copy
¥ Max pooling 2x2x2
T Transpose conv 2x2x2, « same » padding
= Conv 1x1x1, Sigmoid

Settings

Dice loss

Adam optimizer (LR = 107%)

8 volumes per batch

Validation set to earlystop training (Nmax epochs =
100)

Data augmentation (shift, rotation, shear)
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Performance assessment

Dice similarity coefficient

Jaccard index

Symmetric mean boundary distance

DSC

SMBD =

_ 2|An B
|A| + |B]

[ _lansB]
~ |AUB|

D(A,B) + D(B, A)

2
where D(4,B) = {Dgg(ilr}gllx -yll,y € QA}
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Comparison baselines

Deformable image registration
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Results: Our approach outperforms a state-of-the-art DIR-
based software on a representative patient

Ground truth segmentation
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Results

Average DSC

DIR, RayStation

—&— U-net (No training CT)
—8— U-net (16 training CTs)
0.5 - —8— U-net (32 training CTs)
——— U-net (64 training CTs)
0.4 .

N
N
oo

16 24 32
Number of training CBCTs



3 latent spaces cooperating in a
multi-agent approach (incl HITL)

Surface Conlact
Detection Holon




Research assumption 2: Byzantine
learning for sharing data and expertise

*Need of integrative coalitions
-To share data (privacy and relevance)

-To explore complementarity, redundancy and
equivalence of the algorithms

-To asssess co-evolution of algorithms and
human expertise

-By the use of consensus mechanisms
(Federated Byzantine Agreements- blockchain)
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The needs to better use Deep L

-Coalitions for Image Processing

-Distributed machine learning for larger data
sets -Trusted Image Processing through
Integrative Coalitions

- Security (blockchains)
-Reliability (mutimodality-multiagents)

-Human in-the-loop (regular update-how to
poll)
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The Oncoradiomics Model (Ph. Lambin)

Learning
Connector

4

Hospital D
Hospital C Hospital A
Learning 0 . 0 Learning Cata
Connector Warehouse

Connector
== - I
[— Learning —

Coordinator

Hospital B
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Learning
Connector
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Distributed learning:
an abundant litterature

eDistributed SVM: convergence equivalent to central
learning can be proven

-Boyd, Stephen, et al. "Distributed optimization and statistical
learning via the alternating direction method of multipliers."
Foundations and Trends® in Machine learning 3.1 (2010): 1-122

-Forero, P. A., Cano, A., & Giannakis, G. B. (2010). Consensus-
based distributed support vector machines. Journal of Machine
Learning Research, 11(May), 1663-1707.

eDistributed DNN — Federated learning convergence
similar to central learning can be shown

-McMahan, B., & Ramage, D. (2017). Federated learning:

Collaborative machine learning without centralized training data.

Google Research Blog, 3.
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Security requirements

Challenge 1

Data privacy of the datasets used for the training (leakage effect of the
gradients) : working by batches- differential privacy is the “crypto” model

Challenge 2

Protection of the model against degradation by training on inadequate
data: steps validation by the coalition and blockchained public ledger with
hash of the iterative versions of the model

Challenge 3

Confidentiality of the model and the gradients: homomorphic operations
and/or access control of the model vault

Challenge 4

Traceability of the model: DNN watermarking
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WHERE MIGHT A DISTRIBUTED LEDGER USE CRYPTOGRAPHY?

* Digital Signatures
* Private/Public Keys

* Proof of Work and certain alternatives

* Hash Function

NumericFILL,t



The hash function: SHA (one-way!!)

Input Digest

cryptographic
hash
function

cryptographic
hash
function

cryptographic
hash
function

cryptographic
hash
function

cryptographic
hash
function
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Homomorphic encryption

How It Works !

cipherspace
= 16 (6 +10)/2 = 30

6 +10
1 4 4 4
=
T '’
| 8

3+5 = 3¢5 = 15
plainspace

A rudimentary Homomorphic cryptosystem
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Watermarking

Secret marks in audivisual contents:
-Authentication
-Copyright
-Fingerprinting

Watermarks can be embedded into DNN:

-Uchida, Y., Nagai, Y., Sakazawa, S., & Satoh, S. I. (2017, June).

Embedding watermarks into deep neural networks. In Proceedings of the 2017
ACM on International Conference on Multimedia Retrieval (pp. 269-277). ACM.
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Scalable security architectures
for trusted coalitions

TCLearn-A

Learned model is public
Each member is accountable for the privacy protection of its own data

Solution to security challengel
(Data privacy of the datasets used for the training):

Local training of the model by each member with their own datasets
Generated gradients are uploaded and merged with the previous model

Batches of a minimum size to mitigate the long term memory effect

Solution to security challenge 2
(Protection of the model against degradation by training on inadequate data):

Blockchain storing cryptographic hashes of every training step

Federated Byzantine Agreement (FBA) to prevent corrupted increments
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Federated Byzantine Agreement

Validators

« Two types of test databases:
global test database (G),
local test database (L)

« A “general” is randomly selected
among the validators

" ., _ [\ Model
« The “general” creates a new candidate P 4 integrity
\
block referencing the new model \ L Model
. . . . ) acceptance
« Every validator validates the viability N Performance
(model) and integrity of this new / J evaluation _

’
!
’
/
!

candidate block

« Each validator broadcasts its opinion
(positive or negative)

« The FBA process ends when 2/3
of the validators agree
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Scalable security architectures
for trusted coalitions

TCLearn-B
Learned model is private, the members of the coalition trust each other.
Solution to security challenges 1 & 2:
Same as for TCLearn-A

Solution to security challenge 3:
(Confidentiality of the model and the gradients):

Storage of all iterations of the model in an off-chain storage
Iterations only referenced by links in the blockchain
Secure, encrypted transport of the model (using e.g. TLS or S/MIME)

Solution to security challenge 4:
(Traceability of the model):

Access control and audit mechanisms to protect the models and parameters
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Scalable security architectures
for trusted coalitions

TCLearn-C

The members of the coalition do no trust each other.
Solution to security challenges 1 & 2:

Same as for TCLearn-A

Solution to security challenges 3 & 4:

Storage of all iterations of the model in an off-chain storage

Each member is provided with a homomorphically encrypted model and the
corresponding public key, used to encrypt their datasets, by a supervisor

Prediction could be performed locally on encrypted data, but the result
must be decrypted by the supervisor

Full traceability since the encrypted model cannot be used without the
associated public key, itself associated with the partner which received it
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Summary of our blockchained D DNN

o New architecture for distributed learning based on a blockchain using a
federated Byzantine agreement

o Performance of the model ensured through shared evaluation of individual
contributions (leading to acceptance or rejection)

o Trusted coalitions, actions for updating the model stored on a public ledger
implemented as a blockchain

o Three kinds of coalitions with increasing security levels depending on the
requirements for the distribution of the model

o Solutions based on effective cryptographic tools and homographic
encryption

o Data privacy protection through encryption and off-chain storage

0 (Lugan .... Macq)
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https://arxiv.org/abs/1906.07690

